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ABsTRACT: This paper surveys and analyses several simplex shape measures
documented in the literature and used for mesh adaptation and mesh opti-
mization. The paper first summarizes important properties of simplices and
their degeneracies in Euclidean space. Each shape measure is then defined and
validated with respect to a proposed shape measure validity criterion. Exten-
sions to Riemannian spaces are proposed in order to deal with anisotropic
meshes. A visualization scheme is also presented, which helps compare shape
measures to one another.

KEY WORDS: triangle, tetrahedron, simplex shape measures, unstructured
grid, mesh optimization, anisotropy, metric.

Introduction

Shape measures provide an effective quantitative mean of evaluating the quality
of the elements in a mesh which is of great relevance in mesh adaptation and
mesh optimization. Still, while most serious work in the field of mesh adaptation
directly make use of shape measures [19, 27, 28, 33|, very little work has been
devoted to the actual comparison of shape measures, with the notable exceptions
of Liu and Joe [23, 24, 25, 26] who have thoroughly analyzed selected shape
measures, early work by Parthasarathy et al. [30], and recent work by Georges
and Frey [19, 16].

While these published works present some of the standard shape measures
in current use, new shape measures steadily appear in recent literature for
which no analysis is available. Furthermore, no classification scheme has been
proposed, and fitness of new measures is often not assessed.

This paper aims to survey a wider range of shape measures in general
use, to define validity criteria for those measures and to classify them in broad
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categories, beginning with valid shape measures. The paper also addresses issues
regarding the use of shape measures in non-Euclidean spaces in order to be
applicable to anisotropic meshes. Extensions are thus provided for the use of
shape measures in Riemannian spaces.

The first section of the paper summarizes important properties of sim-
plices and introduces a classification of simplex degeneracies in 2 and 3 dimen-
sions. The next section introduces shape measures validity criteria, presents a
wide range of shape measures, and explains how to use them in a Riemannian
space which enables their use for anisotropic meshes. The third section presents
a visualization scheme that helps analyze and compare shape measures to one
another. Implications of the choice of a shape measure into a mesh optimization
process is both theoretically and practically explored. Conclusions are drawn
on the pertinence of developing new shape measures or choosing one among the
currently existing ones.

1 Simplices

This section summarizes some well known properties of simplices, and introduces
some often neglected notions about simplex degeneracies that will be used as
foundations for the classification of shape measures and their comparison.

1.1 Definition of a Simplex

A simplezx, in a space of dimension d, is the convex hull of d + 1 vertices,
and represents the simplest element that can be used to discretize space in
that dimension. In practice, a simplex is a triangle in two dimensions and a
tetrahedron in three dimensions. A more general discussion on simplices can be
found in [16].

1.2 Regular Simplices

A regular simplex is an equilateral triangle in two dimensions and an equilateral
tetrahedron in three dimensions. Equilaterality implies that all edges have the
same length, which relies on the notion of distance, or in a general sense, on
the notion of a metric. By changing the metric tensor used in the metric, it
is possible to generate anisotropic meshes. In this way, anisotropic meshes are
made up of equilateral elements when measured using the appropriate metric
tensor.

Appendices B and C summarize a number of useful formulae that relate
properties of triangles and tetrahedra to their edge lengths. These relations will
be used in section 2 to define the simplex shape measures in Euclidean space.
Possible extensions to Riemannian spaces will also be discussed.



1.3 Degenerate Simplices

A simplex is degenerate if its vertices are all included in a subspace. That is, a
d-simplex is degenerate if its d + 1 vertices do not span space IR?. This means
that a triangle is degenerate when the three vertices are collinear, or a fortiori
when they collapsed into a single point. A tetrahedron is degenerate when its
four vertices are coplanar, or a fortiori when they are collinear or collapsed.
In practice, degeneration detection is replaced by a test on area or volume. A
triangle is degenerate if its area vanishes, and a tetrahedron is degenerate if its
volume vanishes.

The most systematic way of classifying simplex degeneracies is not to
consider the process that leads to the degeneracy but rather the final config-
uration of the degenerate simplex. In order to systematically classify simplex
degeneracies, the following notation, inspired from astronomical atlases, is used

: the four symbols e | ¢ , ¥ and * will respectively be used to denote
vertices of multiplicity one, two, three and four.

Tables 1 to 3 presents simplex degeneracies. For each type of degeneracy,
a name inspired from the literature (mostly Bern et al. [2, 3]) is used when
available, and degenerate cases not yet identified are given distinctive names.

Table 1: The three degeneracies of triangle: NDE is the number of degenerate
edges, and rx is the circumradius limit.

Name h—0 h=0 NDE rK
C
Cap e A C B 0 o
A B
C ¢—. 1 hmax
Needle (i — AC B —
A B
Big gsh M 3 0
Crunch AT B A,B,C

Table 1 lists the three degenerate cases for the triangle. Each case is
illustrated before and at degeneracy, and for each case, the number of short
edges and the final circumcircle radius are listed. These informations are central
to the analysis of shape measures, as they are often used to detect degenerate
cases, and are thus included in the computation of various shape measures. In
the Needle degeneration case, the listed circumcircle radius Ay, /2 corresponds
the half-length of the two non-degerate edges of the degenerate triangle.

Table 2 presents the four types of planar tetrahedral degeneracies and Ta-
ble 3 presents the five types of linear degeneracies, and the punctual tetrahedral
degeneracy.



Table 2: The four planar degeneracies of tetrahedron: NDF is the number of de-
generate edges, A is the type of degenerate triangular faces (¢ =cap, n =needle),
rx is the limit of the circumsphere radius and r42pc¢ is the circumcircle radius
of triangle ABC.

Name h—0 h=0 NDE A K
D D
A
Fin A@ Wﬁ 0 1c (o)
B B
D
A
Cap A@ @ 0 0
B B
D , C '
Sliver A@ A@D 0 o lamC
/& B
D C.D
2] B

2 Shape Measures of Simplices

The concept of shape measure is widely used in the mesh adaptation literature,
but while the use of this notion is quite spread, few papers actually define and
compare various shape measures one to another. In this regard, papers by
Liu and Joe [23, 25, 26], and especially reference [24] stand as landmark work
on the topic. Other reviews of tetrahedron shape measures appear as well in
George and Borouchaki [19] and Parthasarathy et al. [30]. The underlying idea
behind all simplex shape measures is to define a way to quantify the shape of a
simplex. In particular, this quantity should be optimal for the regular simplex
and it should be sensitive to all simplex degeneracies. There are so many simplex
shape measures in the literature that we suggest the following global definition,
introduced in Dompierre et al. [11] and derived form Liu and Joe [24]:

Definition 2.1. A simplex shape measure is a continuous function that
evaluates the shape of a simplex. It must be invariant under translation, rota-
tion, reflection and uniform scaling of the simplex. It must be mazimum for the
reqular simplex and it must be minimum for all degenerate simplices. For the
ease of comparison, it should be scaled to the interval [0,1], and be 1 for the
reqular simplex and O for a degenerate simplex.

In this definition, the invariance by translation, rotation and reflection



Table 3: The five linear degeneracies of tetrahedron and the punctual degen-
eracy: NDE is the number of degenerate edges, A is the type of degenerate
triangular faces (¢ =cap, n =needle, BC=Big Crunch), rx is the limit of the
circumsphere radius.

Name h—s0 h=0 NDE A TK
D
Crystal A C A B D C 0 dc o0
B
A 2
. A o4 ——— ¢
Spindle C A B,D C 1 2n >
D
. C -~ o 4 2c
Splitter | 4 ‘L\‘V A D pc Yo, 0
B
D C h
h +—¢ max
Slat A Bh A, D B,C 2 4n 2
0
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C L EE——— §
Needle A‘@L A B,C,D 3 1BC 2
B
N
Big A C
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makes the measure independent from any coordinate system. The invariance
by uniform scaling of the simplex makes it independent from any measurement
units. This is not considered to be a degenerate tetrahedron until the volume
as actually reached zero. Also under this definition, continuity requirements
are to ensure that if a simplex is close to the regular simplex, then the simplex
shape measure should be close to 1. Conversely, if a simplex is close to being
degenerate, then the simplex shape measure should be close to 0. Any simplex
shape measure that satisfies Definition 2.1 is a valid simplex shape measure, and
any criterion considered as a simplex shape measure but that does not satisfy
Definition 2.1 is said to be an invalid simplex shape measure.

When the area of a triangle or the volume of the tetrahedron is negative,
the simplex is more than degenerate, it is inverted. In this case, some simplex
shape measures return a negative number, and some others return a positive
number because, for example, they depend on the square of the area or of the



volume. Due to the invariance by reflection, any valid simplex shape measure
returns a positive number. Simplex shape measures should not be used to
determine whether a simplex is inverted. Rather, if a mesh contains inverted
simplices, the mesh optimizer should try to remove them by optimizing the
volume of the tetrahedra or the area of the triangles, by minimizing the sum of
the absolute value of the volumes or of the areas as proposed by Coupez [10]. In
the context of inverted simplices, the shape of the inverted simplex is irrelevant,
what matters is its size.

A review of simplex shape measures is presented in the following sub-
sections. The shape measures are grouped in broad categories according to
the fundamental measures involved in their computation. Each shape measure
is classified as valid or invalid according to Definition 2.1. A short discussion
follows to extend these measures to the case of anisotropic meshes.

2.1 Linear Transformation Based Shape Measures

Many authors introduce shape criteria constructed from the matrix involved
in the linear transformation of a simplex K to a regular reference simplex.
While the choice of the defining parameters of the reference simplex (in terms
of vertex numbering, coordinates, etc.) is somewhat arbitrary and impacts
on the transformation matrix N, the product N7 N does not depend of those
parameters. Indeed, all these matrices induce the same metric tensor Mg (see
Eq. A.4), which transforms simplex K into an equilateral simplex. This metric
tensor is uniquely defined, and can also be determined by solving a linear system
of equations that expresses the constraint whereby each edge of the simplex K
is brought to unit length.

Liu and Joe [24] have defined the transformation matrix M in a simplex
K of a regular simplex with the same size (same area for triangles and same
volume for tetrahedra). The mean ratio shape measure 7 can be written as:

2(MM)Y? 43Sk 19D
d 1/d A+ A 2 ’
(H )\i) LA Z Lij
=1 1<i< <3
T T 30weng)® 129072 &1
72N 17278 = K in3D.
i=1 A1+ Ao+ A3 Z ij
1<i<j<4
where the \;, i = 1,...,d are the eigenvalues of the matrix M7 M in dimension

d. Notations are detailed in Appendices A, B and C.

Formaggia and Perotto [13] introduce another linear application N and
define the stretching factor of simplex K as the ratio of the largest to the smallest
eigenvalue of N~!. This stretching factor is also the square root of the condition
number of matrix M . The condition number k of a simplex is then defined as
the inverse of the condition number of matrix M. « is a shape measure which



is expressed as
min \;
i\

= = 2.2
max )\, Ag (2.2)
1

if the eigenvalues are sorted in increasing order.

Knupp et Freitag [22, 14] have introduced another shape measure, also
called the condition number, based on a composition of linear applications that
first transforms a simplex K into a right angled reference element (such as used
in finite element analysis) and then transforms this right angled element into an
equilateral simplex of unit edge length. The transformation matrix is denoted
S = AW~ and is the inverse of the transformations described above, going from
reference space to real space. The condition number of simplex K is defined
as the product of Frobenius’ norm of the matrix and of its inverse. Frobenius’

matrix norm is defined as
1/2

IS]| = (tr(S™5))

The matrix ST S involved in the norm of S is the inverse of the metric tensor,
ie M'. It is proven in [14] that the inverse of the condition number, scaled by

the space dimension,
~ d

K= ——
SIS

is a shape measure k according to Definition 2.1.

(2.3)

2.2 The Radius Ratio

The radius ratio p of a simplex K is defined to be p = dpk /rx where pg and rg
are the inradius and circumradius of K, respectively, and d is the dimension of
the space. Using the Egs. (B.1) and (C.2) of px and rx in two and three
dimensions, the radius ratio is written as

8% in 2 D

_ K PK L1z Ly3 Las ’

P = 216V in 3D,
Vatbtoatb-adate-nbie-ay.

(2.4)

where a, b and ¢ are the products of opposite edge lengths of a tetrahedron K.

2.3 The Minimum of the Solid Angles

A mesh is a Delaunay mesh if the circumsphere of each element does not contain
any other vertex of the mesh. In two dimensions, the Delaunay property is
equivalent to maximize the minimum of the angles of the triangles of the mesh,
called the max—min angle criterion. It was therefore natural to use the minimum
of the angles of a triangle as a shape measure. This shape measure in two
dimensions will yield a mesh satisfying the Delaunay criterion.



In three dimensions, Delaunay meshes do not generally satisfy the max—
min angle criterion [32]. Remember that a mesh containing badly shaped tetra-
hedra like the sliver in Table 2 can pass the Delaunay criterion. A simplex shape
measure based on the minimum of the solid angles 6,,;, will result in meshes of
better quality than Delaunay meshes having some sliver elements.

The solid angle 0; at the vertex P; of a tetrahedron K is defined to be
the surface area formed by projecting each point of the face not containing P;
to the unit sphere centered at P;.

The minimum of the solid angles simplex shape measure is defined as

1 .

Orrin, = O 1§IZ_nS17rL1+1 0;, (2.5)
where 0; is given by Eq. (B.3) in two dimensions; 6; is given by Eq. (C.4) in
three dimensions; o = 7/3 =~ 1.047 is the value of the three solid angles of the
regular triangle and o = 6 arcsin (\/§/3) — 7 =~ 0.551 is the value of the four
solid angles of the regular tetrahedron.

This measure is sensitive either to narrow and to large solid angles. In
two dimensions, the maximum of the solid angles in a triangle is 7, the sum of
the solid angles of a triangle is 7 and a large solid angle near 7 implies that the
triangle has also small solid angles. In three dimensions, the area of a unit sphere
is 4m, the maximum of the solid angles for a positive tetrahedron is 27 in the
case of a flat tetrahedron where a vertex sees half of the space. The solid angle
at the corner of a right-angled tetrahedron is 7/2. It is shown in Gaddum [17]
that 0 < Z?:l 0; < 27. Therefore, a large solid angle near 27 for K implies
that K has small solid angles.

The evaluation of the expression 6; = 2 arcsin(-) is always in the interval
[0, 7]. It means that the Eq. (C.4) can be only used to measure solid angles
less or equal to . So the maximum solid angle of a tetrahedron can wrongly
be evaluated using Eq. (C.4). However, the minimum of the solid angles is not
affected. Let 6; < 05 < 03 < 64. Since 0 < Z?:l 0; < 2m, only 6, may be
larger than 7. The computation with Eq. (C.4) of 6, returns 6, = 21 — 0.
Substituting 64 by 27 — 54 in Zle 0; < 2w gives 61 + 03 + 03 < 54. So, 0,
which is lower or equal to 0 and 63 is also lower or equal to 54. The conclusion
is that even if the Eq. (C.4) does not return the correct value for a solid angle
greater than =, it does not affect the tetrahedron shape measure (2.5) based on
the minimum of the solid angles. An equivalent deduction can be done in two
dimensions.

Instead of computing the arcsin(:) in Eq. (B.3) and (C.4), from a com-
putational point of view, a cheaper simplex shape measure is used in [24]

1 .
Omin = min oy 2.6
mwn ﬂ 1§l§n+1 (3 ( )
where 0; = sin(f;) in two dimensions; o; = sin(;/2) in three dimensions;

B = sin(a) = V/3/2 =~ 0.866 is the value of o; for the three solid angles of
the regular triangle; and 8 = sin(a/2) = v/6/9 =~ 0.272 is the value of o; for the
four solid angles of the regular tetrahedron.



2.4 The Interpolation Error Coefficient

In finite element analysis there are theorems [34] that bound the interpolation
error of a function over a finite element with a coefficient multiplied by the
semi-norm of the function. This coefficient is something like Dy /ox where D
is the diameter of the element K and px is the roundness of the element K.
The diameter of an element is the length of the greatest straight line inside the
element. For a simplex, it is the longest edge. The roundness of an element is
the diameter of the greatest sphere (circle in two dimensions) included in the
element. For a simplex, it is twice the inradius. The diameter and the roundness
are defined for simplicial and non simplicial elements but it is not necessarily
easy to compute the diameter of the greatest sphere included in an hexahedron
or a prism.

When a simplex K is degenerate or close to, the diameter Dy is large
and the roundness gx is small, then the coefficient Dy /ok is a large value
that indicates a large bound for the interpolation error. So, this coefficient can
be used to measure the shape of a simplex K. (Note that a large bound for
the interpolation error does not necessarily mean that the interpolation error is
effectively large).

To be compatible with Definition 2.1 of the simplex shape measures and
to avoid division by zero for degenerate simplices, the interpolation error coeffi-
cient simplex shape measure is defined using the inverse of the coefficient of the
interpolation error. This simplex shape measure is named v, according to pub-
lications from the GAMMA project (Génération Automatique de Maillages et
Méthodes d’Adaptation) at the Institut National de Recherche en Informatique
et en Automatique (INRIA), France [19, 7, 15, 18, 19].

23-LE . in2D,

hmax

12 pk

% hmar
2.5 The Minimum of the Dihedral Angles

The minimum of the dihedral angles is a tetrahedron shape measure that has
no two-dimensional equivalent. The dihedral angle at an edge of a tetrahedron
is the angle between the intersection of the two faces sharing this edge and a
plane perpendicular to the edge. For a positive tetrahedron, the dihedral angle
is bounded by zero and 7. It is equal to m minus the angle between the normals
of the faces.

v = (2.7)

in 3 D.

' min ¢ =a' min (7 — arccos (ni1 - nij2)), (2.8)

Samin:()éi 1111 L
1<i<j<4 1<i<j<4

where 751 and n;;o are the two normals to the triangular faces adjacent to the
edge ij and o = m —arccos(—1/3) = 1.231 is the value of the six dihedral angles
of the regular tetrahedron. The minimum of the dihedral angles is sometimes
used as a tetrahedron shape measure.



According to Definition 2.1 of a tetrahedron shape measure, the minimum
of the dihedral angles ¢,,;, is an invalid tetrahedron shape measure. The
underlying problem with tetrahedron shape measures based on the dihedral
angles is that they fail to detect some degenerate tetrahedra. Referring to
Table 3, the smallest dihedral angle of the needle can be as large as % and the
largest dihedral angle as small as 7. The spindle and the crystal can have a
minimum dihedral angle close to %, with a maximum dihedral angle close to 7.

2.6 The Edge Ratio

The edge ratio r of a simplex K is defined to be the ratio between the length
of the shortest edge over the longest, i.e.,

r= hmin/hmaxa (29)

where h,,, and Ay, are defined by Egs. (B.2) and (C.3).

According to Definition 2.1 of a simplex shape measure, the edge ratio r is
an inwvalid simplex shape measure because it does not vanish for all degenerate
simplices. In two dimensions, it can be as large as % for the cap. In three

dimensions, it can be as large as ‘/75 for the sliver, % for the fin, ? for the cap
and % for the crystal.

2.7 The Delaunay Criterion as a Shape Measure

The Delaunay criterion can be used to connect vertices to built a simplicial
mesh. As seen above in Sec. 2.3, using this criterion in two dimensions is
strictly equivalent to reconnecting vertices regarding to the minimum of the
angles shape measure.

Remarks must be made about three-dimensional meshes satisfying the
Delaunay criterion. It is important to note that valid simplex shape measures
will detect slivers. Since meshes that satisfy the Delaunay criterion can nev-
ertheless contain slivers, satisfying the Delaunay criterion does not constitute
a guarantee that a mesh does not contain degenerate tetrahedra, and in that
respect, the Delaunay criterion by itself does not act as a valid shape measure.

2.8 Extension to Riemannian Spaces

All simplex shape measures have been presented here in the frame of the usual
Euclidean space. In order to get anisotropic meshes, these measures are now
extended to the context of a Riemannian space.

A metric tensor is a tensor representing the deformation of space equiva-
lent to the size specification map. Appendix A summarizes notions about met-
rics used in this paper, and exhaustive discussions on the topic of metrics can be
found in [12, 21, 20, 5, 8, 9, 6, 4] among many others; the first references being
Vallet [36, 37], and the most complete being George and Borouchaki [19, 16].

A Riemannian metric is defined by a metric tensor field (see Appendix A)
whose variations must be continuous. For meshing purpose, we assume smooth



variations of the metric. With this assumption metric variations can be locally
neglected resulting in a local uniform, eventually stretched, metric.

Practically, the metric tensor M (P) is averaged on a simplex into M
using a quadrature formula for each of its coefficients. This yields an Euclidean
space that is not necessarily Cartesian (the tensor is not necessarily the identity
matrix). Edge lengths are then computed using Eq. (A.2) with a uniform metric
tensor. This simplifies in

LM =/, - PYT M (P, - P). (2.10)

Simplex measures are computed the same way using Eq. (A.5) where M is
approximated by M. Hence, expressions for area of a triangle and volume of a
tetrahedron in the local metric simplify into

SM = Sper/det(M), (2.11)
VM = Vier/det(M). (2.12)

The other simplex characteristics pr, "k, Fmin, Pmaz and 8; can now be
approximated in the local metric using L{\j", Sf{‘ and VI/(M in the approximate
formulas given in Appendices B and C. Finally, simplex shape measures can
be approximated in the Riemannian metric.

and

3 Comparison of Triangle Shape Measures

A method is presented that helps to visualize the behavior of the various shape
measures. This method is used to compare and choose a shape measure for its
simplicity and its regularity. The effect of the metric tensor stemming from the
anisotropic mesh is also illustrated.

3.1 Visualization of Triangle Shape Measures

Vallet [37] introduced a way to visualize the shape measure of a triangle. Con-
sider three vertices A, B and C3 lying on the xy-plane (Fig. 1 left). The vertex A
is at coordinate (0, 1), the vertex B is at coordinate (0, =) and the vertex C,
at coordinate (z, y), is free to move in the half-plane z > 0.

At each location of vertex C, a given shape measure of the triangle ABC
is evaluated which gives the three-dimensional plot of the shape measure shown
in Fig. 1 on right. Using this method, Figs. 2 and 3 show the contour plot of each
triangle shape measure introduced in Section 2. By examining these contour
plots, it is easy to assess whether a triangle shape measure is valid according to
the Definition 2.1: valid shape measures reach a maximum for the equilateral
triangle at coordinate (@, 0); a minimum has to be zero and must be reached
on the y-axis where the three vertices of the triangle are collinear. Between
these two extrema, the triangle shape measure must be a continuous function



Figure 1: Definition of the location of the three vertices A, B and C of a triangle
(left) to build the three-dimensional plot of the triangle shape measure (right).

with values between 0 and 1 exclusively. These plots show that the edge ratio
is not a valid triangle shape measure (see Fig. 3 on right) because it does not
vanish on the y-axis where the three vertices are collinear and the triangle is
degenerate.

Figure 2: Contour plot of the mean ratio shape measure n (Eq. (2.1)) left, and
of the radius ratio shape measure p (Eq. (2.4)) right.

3.2 Choice of a measure for mesh optimization

Analysis of Fig. 2 and 3 helps to determine which triangle shape measure is
the most convenient to use for mesh optimization. Clearly, an invalid simplex
shape measure is a bad choice because it will not detect degenerate simplices
and may drive the mesh optimizer in a wrong direction. Note however that in
the neighborhood of the regular triangle, the contour lines of all shape measures
have a correct behavior. Even the triangle edge ratio measure r, plotted in



Fig. 3 on right will yield correct meshes as long as the mesh optimizer stays far

3 \
D)
v

0

Figure 3: Contour plot of the minimum of solid angles shape measure 60,,;,
(Eq. (2.5)) on left; of the interpolation error coefficient shape measure ~y
(Eq. (2.7)) in center and of the edge ratio measure r (Eq. (2.9)) on right.

All valid triangle shape measures plotted in Figs. 2 and 3 are continuous.
Among them, p and n are derivable, but 6,,,, and v are not derivable along
curves because these measures use the minimum or maximum operator, which
are not derivable. Non derivable simplex shape measures can be used for mesh
optimization but convergence may be less efficient.

Another well known feature of optimization algorithms is that the con-
vergence is easier and faster if the function to maximize is circular around the
optimal point. Conversely, the convergence will be slower if the function to max-
imize has sharp ridges (or narrow valleys for minimization problems). Finally,
consider that the simplex shape measure p evaluated with Eq. (2.4) is an unde-
fined fraction for some degenerate simplices. Moreover, as proved in [1], contour
plots drawing the mean ratio measure 7 are circles. The conclusion from these
remarks is that the mean ratio 7 is the most convenient simplex shape measure
for two dimensional mesh optimization. It is also the less expensive to evaluate
numerically.

So, from a practical point of view, the mean ratio 7 is the most convenient
triangle and tetrahedron shape measure to use in a mesh optimizer.

3.3 Visualization of anisotropic shape measure

The effect of the metric tensor on the contour plot of the shape measure can also
be illustrated. Indeed, as presented in sections 1.2 and 2.8, the metric tensor
takes into account the anisotropy required for the mesh. Thus, the metric tensor
stores the information necessary to specify the stretching and the orientation of
the simplex to build. If the metric tensor is constant, it induces an Euclidean
space that modifies the optimal position of the third vertex.

Figure 4 presents the contour plot of the two dimensional 1 shape mea-
sure for three different metric tensors. The 7 shape measure being the ratio



of the area of the triangle over the sum of square of the length of the edges of
the triangle(equation (2.1)). In order to take into account the different metric
tensors, the area of the triangle in the metric space is computed using equa-
tion (A.5) and the length of the edges in the metric space are computed using
equation (A.2). For a constant metric tensor, equation (A.2) can be simplified
to equation (2.10) and the area of the triangle in the metric space can be written
as a function of the length of its edges by using Héron’s formula (B.4).

s
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Figure 4: Contour lines of the n shape measure, based on the average ratio
(equation (2.1)), for three constant metric tensors.

In Fig. 4, the metric tensor M, is a positive definite symmetric tensor
that is equal to mi1 = 0.2, m12 = 0 and may = 1 for the figure on the left,
mi1 = 20, mi2 = 0 and mos = 1 for the figure in the middle and m1; = 0.9,
myz = 0.4 and mos = 1 for the figure on the right. In comparison, Fig.2 on the
right is nothing more than a representation of the 1 shape measure for which
the metric tensor is the identity matrix. In these four graphs, degeneracies
appear when the vertices are collinear and is independent of the metric tensor.
However, the optimal position of the third vertex of the simplex depends on
the value of the metric tensor used. Moreover, the contour lines of the 1 shape
measure, that are circles for the identity matrix, now become ellipses in the
general case.

4 TImplications for Mesh Optimization

For mesh optimization, all shape measures are more or less interchangeable,
despite their differences. To illustrate the similarity of various shape measures,
Fig. 5 shows a superposition of contour plots drawn previously.

This similarity can be formalized by the notion of equivalence between
shape measures.



Figure 5: Superposition of the contour plot of the triangle shape measure 7
(Ba. (2.1)), p (Ba. (2.4)), Oon (Bq. (2.5)) and 7 (B, (2.7)).

4.1 Equivalence Relation

One of the deepest analysis of simplex shape measures available is from Liu and
Joe [24]. They define the notion of simplex shape measure equivalence in the
following way:

Definition 4.1. Let 1 and v be two different simplex shape measures scaled in
the interval [0, 1]. p and v are equivalent if there exist positive constants cg,
c1, eg and e; such that

cov® < p < v, (4.1)

If e (e1) is the minimum (maximum) possible exponent, then the lower (upper)
bound is said optimal. If ¢y (¢1) is the maximum (minimum) possible constant,
then the lower (upper) bound is said tight.

Note that this relation is an equivalence relation for shape measures since
it is symmetric, reflexive, and transitive. Indeed, the roles of  and v can be
reversed in the definition. The symmetry appears as follows: if y is equivalent
to v with ¢gr® < pu < e, then v is equivalent to p with cou® < v < c3u®,
where ¢y = cfl/el, es = 1/e1, c3 = cal/eo and e3 = 1/ep. The transitivity
appears as follows: if p is equivalent to v with cor® < p < ¢v® and if
v is equivalent to v with cov® < v < c3v® then pu is equivalent to v with
cav® < p < c5v%, where ¢4 = cgc3?, es = egea, c5 = c1c5' and e = eqes.

4.2 Equivalence of Simplex Shape Measures

Liu and Joe [24] proved the equivalence of the tetrahedron shape measures 7,
p and o, (Egs. (2.1), (2.4) and (2.6) respectively). More precisely, they



demonstrated the following inequalities with strict upper bounds:

0’ < p < pH* << ptl?,
0.229617%/2 < gypin < 11398734, 0.8399522 < < 2.666702/2,
0.2651p2 < Gpin < pH/2, 02 < p<1.94200)2

Furthermore, it can be shown that the 7, x, K and v shape measures
(Egs. (2.1), (2.2), (2.3) et (2.7)) belong to the same equivalence relation, at
least in two dimensions for . Indeed, the following relationship can be verified
(the bounds are not necessarily optimal or tight).

2, 2
-y <p< — in 2 D,
37 _P_\/g’Y
kY2 <R < dr'/? indD,
Hg'r}gdnl/d ind D,

K= in 2 D,
V2/3732 <k <3n'/? in3D.

\
3

These equivalence imply that if one of these shape measures approaches
zero, which indicates a poorly-shaped simplex, then so do the others. Con-
versely, if one of these shape measures approaches unity, then so do the others.
But the rate at which they approach zero or unity may differ as do 1 and v = p?
for example.

4.3 Equivalence Classes for Shape Measures

The equivalence relation can serve to partition the possible shape measures into
equivalence classes. A shape measure would then be equivalent to all shape
measures of it’s class. In practice, it seems that all the shape measure presented
in Sec. 2 belong to the same equivalence class. Indeed, it is the case for 7,
K, Ry Y, p €t Omin. 1t is tempting to conclude that the equivalence class of
Definition 4.1 includes all the shape measures that satisfy Definition 2.1. But
such is not the case. A counter example given by A. Liu serves to prove this
point.

Let 1 be a shape measure that satisfy Definition 2.1, then v = 2(#—1/n
is also a shape measure according to Definition 2.1. It can not be proven that u
et v are equivalent according to Definition 4.1 since there does not exist any
constants ¢y and eg such that cou® < v when p tends toward zero. This is due
to the fact that the exponential asymptotic behavior of v tends towards zero
faster than any possible polynomial asymptotic behavior.

Although the equivalence relation is weak, it is still possible to compare
meshes obtained by optimizing different shape measures. Indeed, any shape
measures that satisfy Definition 2.1 can be used by a mesh optimizer. Remember
that, by definition, they will all detect all simplex degeneracies. They will all
be sensitive to badly shaped simplices. Moreover, the more a mesh is optimized



with a given simplex shape measure, the closer to the optimal mesh it is for
any other simplex shape measure. In the limit, if it were possible to mesh a
domain with only equilateral simplicies, as it is in two dimensions, all mesh
optimizers should converge to that mesh, whatever shape measure is used in the
mesh optimizer. These assertions are justified in the next section.

4.4 Practical comparison of shape measures

Three two-dimensional test-cases are presented to practically compare various
shape measures. Due to the problem of visualizing tetrahedral meshes, no three-
dimensional example is given. Results can be extended to the third dimension
except that no perfect mesh exists in three dimensions. It is impossible to fill
space with regular tetrahedra. So, the optimal mesh is always unknown and
slightly depends on the tetrahedron shape measure used.

The test-cases are optimized using the mesh optimization package
OORT (Object-Oriented Remeshing Toolkit)!. It can be described as a mesh
optimizer that acts on every characteristics of a mesh, namely the number of
vertices, vertex coordinates and simplex connectivity. It is based on an algo-
rithm performing successive local modifications such as mesh refinement, edge
collapsing, vertex relocation or vertex reconnection. Stopping criteria are tight
enough to perform a real mesh optimization, not only mesh enhancement.

In two dimensions, for certain domains, a perfect mesh can be obtained
in which all the triangles are optimal. For instance, the domain consisting of an
equilateral triangle meshed using an uniform target size of 1/10 of the domain
edge length can be meshed using only equilateral triangles. In that case, the
initial mesh has no influence on the result since it is unique. Using the same
algorithm with various shape measures, the perfect mesh must be obtained, and
is obtained with the mesh optimizer.

This example shows that the triangle shape measure has no effect on
the final mesh, if a perfect mesh can be obtained. If the heuristic used by the
mesh optimizer is able to get it, it will obtain it, whatever shape measure is
used. In this example, three measures have led to exactly the same choices
during the whole process: the same 124 edges have been swapped, on about
2000 checked edges. The values of the shape measures differed but comparing
the same configurations drove to the same decisions.

The previous example is really academic since perfect meshes are impos-
sible on almost every domain. The next example is a square. Optimal meshes
are not perfect, so they vary with the shape measure. But differences are small
(see Fig. 7). The choice of a shape measure has more effect when the optimal
mesh is far from a perfect mesh.

The last test-case is the same as the first one, but the optimization
algorithm differs. Vertex relocation has been excluded from the possible mesh
modifications. The resulting optimizer is less powerful, so it is not surprising
that the final meshes are not perfect anymore (Fig. 8).

1See http://www.cerca.umontreal.ca/oort.



(a) n (Eq. (2.1)) (b) p (Eq. (2:4)) (€) bmin (Eq. (2.5))

A A

(d) v (Ea. (2.7)) (e) r (Eq. (2.9))

Figure 6: Simplex meshes of an equilateral triangular domain with a mesh
target edge length of 1/10 of the domain size and with five different triangle
shape measures.

Although the five meshes obtained from various shape measures differ
significantly, it is not right to conclude from these differences that one shape
measure is better than the other. The only valid conclusion is that the mesh
optimizer is not powerful enough to reach the optimal mesh. The problem
is in the optimization algorithm, not in the simplex shape measure used for
optimization.

Conclusions

A taxonomy of simplex degeneracies has been proposed and a systematic way
of classifying them based on the final configuration of the degenerate simplex
is presented in tables. A definition of simplex shape measure has been put
forth that takes into account all possible degeneracies. Using this definition,
commonly used shape measures were cast into a standard notation and analyzed
to determine which were valid shape measures. A method was given to use them
for anisotropic meshing by extending the shape measures to Riemannian space
by expressing basic concepts such as length, area and volume in a metric.
Several shape measures were visually compared which has clearly ex-
pressed the regularity of the mean ratio n (Eq. (2.1)) and the radius ratio p
(Eq. (2.4)), and the shortcomings of invalid shape measures were particularly



(a) n (Eq. (2.1)) (b) p (Eq. (2:4)) (¢) Omin (Eq. (25))

(d) v (Bq. (2.7)) (e) 7 (Eq. (2.9))

Figure 7: Simplex meshes of a square domain with a mesh target edge length
of 1/10 of the domain size, using five different triangle shape measures.

evident. All the commonly used shape measures were then compared using the
equivalence relation of Liu and Joe [24], and all were shown to be in the same
equivalence class. Furthermore, it was shown on academic test-cases that the
choice of a shape measure to drive mesh optimization is much less crucial that
the power of the mesh optimizer.

Although all of the tested shape measures yielded comparable results,
the mean ratio n (Eq. (2.1)) is particularly appealing due to its simplicity and
its regularity.

From the present work, it can be concluded that more attention should be
given to optimization and generation algorithms rather than defining new shape
measures. Indeed, our intuition about mesh generation and optimization is that
it is a mon linear, and even discontinuous problem. It is therefore impossible
to generate directly the optimal mesh. The optimal mesh can only be reached
with an iterative process that can remove vertices, change the coordinates of the
vertices and change the connectivity between vertices. These are the operations
that allow to handle all degrees of freedom of a mesh. All these operations
must be combined together in an heuristic such that they work together in the
same direction and that they converge towards the optimal mesh. Ideally, they
should optimize the same objective function measuring how much a mesh fits



(a) n (Eq. (2.1)) (b) p (Eq. (2:4)) (€) bmin (Eq. (2.5))

Figure 8: Simplex meshes of an equilateral triangular domain with the same
target and the same triangle shape measures as on Fig. 6. Only the optimization
algorithm differs.

with the target. In that context, the choice of a specific shape measure has far
less impact on the final mesh than the careful combination of operations within
the optimization strategy.
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A Notion of Riemannian Metric

The standard way of measuring distances in Euclidean space is a special case of
a more general approach to measure that shall be briefly summarized here. The
objective behind the introduction of this length measurement approach is to re-
cast in a more general framework the various numerical constraints imposed by
applications on numerical mesh generation and adaptation. Each type of appli-
cation imposes domain specific constraints on mesh generation in terms of opti-
mal element size distribution, element size distortion and stretching. Through
the use of a metric, constraints can be expressed in domain independent terms,
and in doing so, mesh quality can be assessed in absolute terms, regardless of
specific application domains.

In order to abstract shape and size specifications, which can take numer-
ous forms and names, a general tensorial approach is taken, whereby all desired
mesh characteristics are expressed in terms of a continuous second order tensor.
The Riemannian metric framework was chosen for mesh constraints representa-
tion since this formalism can account for both isotropic and anisotropic mesh
control specifications, and includes a wide range of size and shape specification
schemes in current use in the literature.

Let P be a point in space IR?, and M(P) be a continuous second order
symmetric tensor field define over IR?. If M(P) is symmetric positive definite,
it can be expressed as the product of three tensors:

M(P) = RY(P) D(P) R(P), (A1)

with R(P) a rotation tensor, RT(P) = R !(P) the inverse rotation tensor,
and D(P) a diagonal tensor with all terms strictly positive. These diagonal
terms are the eigenvalues of M(P). The metric tensor field M(P) associated
with a method to measure distance then defines a Riemannian metric or simply
a metric over space IR



A.1 Length

With this definition, many simplex quantities can be rewritten in terms of the
metric. First, the length of a parametric curve v(¢) = {(z(t),y(t), 2(t)), t € [0,1]}
can be expressed in metric space M by equation

L = [ )T M) v (A.2)

In this expression, ~y(¢) represents a point on the curve and ~'(t) the tangent
vector at that point.

Mawvriplis [29] introduced metric change in terms of local space deforma-
tion. To illustrate this, lets denote

M 0 0
D= 0 X o0 |,
0 0 X

the diagonal tensor made up of the eigenvalues of the metric tensor in 3-space.
The local linear transformation N

VA0 0
N=| 0o vx o R, (A.3)
0 0 Vs

can now be constructed from R(P), the rotation tensor, and D'/2. This local
transformation relates to the metric M in the way that it is equivalent to
measure the length of a vector X in the original space through the metric M,
or to measure the length of the transformed vector N X. Indeed,

XTMX=XT"N'NX=(NX)'NX=|NX|? (A.4)

Lengths are thus easily measured with a metric. Shape measures, how-
ever, are often expressed in terms not only of lengths, but also of area, volume
and angles, which must also be computed using a metric.

A.2 Measure

The measure of simplex K — area in two dimensions and volume in three
dimensions — in the metric M, is the integral of the square root of the metric’s
determinant over K. This measure will be denoted V*'. Through a change of
variable, using Eq. A.4, we can write

V{(‘":/ ldV:/ det(N) dV
N(K) K

since det(NN) is the Jacobian of the linear transformation. Moreover, from
Eq. (A.3), we have det(M) = (det(N))?, so that

Vi = /K V/det(M)av. (A.5)



This integral can be computed numerically using a quadrature rule. Approx-
imate formulae can also be derived, that are based on edge lengths, as are
presented in the following appendices.

A.3 Angle

Another quantity often involved in shape measure is the angle between two
vectors in the metric space. Let two vectors V' and W that meet at point P, we
have

VEM(P)W
[NV INW]|

where 0 is the angle between V and W.

cos(f) = (A.6)

B Approximate Formulae for the Triangle

When dealing with shape measures in metric space, computation of all quan-
tities must be recast in this new framework. While some basic quantities can
be precisely expressed and numerically computed using exact maths, derived
quantities tend to become very involved in terms of computational complexity
and cost. For that reason, approximate formulae are often very helpful to help
analyze and compare shape measures in metric space. The following formulae
are valid in Euclidean and for uniform metric spaces. A uniform metric space is
a deformed space where the deformation tensor is constant from point to point.

Since edge length is the simplest measure to compute over a simplex,
care has been taken to formulate all these approximate formulae in terms of
edge lengths measured in Euclidean or metric space.

Let K stands for a non degenerate triangle with vertices Py, P> and Ps;
Sk denotes the area of K and L;; = ||P; — P;||,1 < i < j < 3, denotes the
length of the three edges P;P; of K.

The half-perimeter pr, the inradius px and the circumradius rx are
given by

(L12 + L1z + La3) _ Sk e — L12 L3 Lo

Pk = ) PK = )
PK 45k

> (B.1)

In finite elements terms, the diameter h,,,, of an element is the maximum
Euclidean distance between two points of an element, which is the longest edge
for a simplex. The smallest edge of an element is denoted A4, -

hmaz = max(Lia, L13, Lag), hmin = min(L12, L13, Lag). (B.2)

The angle 6; at vertex P; of the triangle K is expressed as a function of the edge
lengths as

—1
0; = arcsin <QSK< H L,-J-Lik> ) (B.3)
g, k#i

1<5<k<3



Finally, the area Sk of the triangle can also be expressed as a function of its
edge lengths by Heron’s formula:

Sk = pr(px — L2)(pr — L13)(px — Las). (B.4)

Note that if the three lengths used, L2, L13 and Lo3, do not form a triangle, i.e.
they do not satisfy the triangular inequality, as it can happen in a non-Euclidean
metric, then the square of the area has a negative value. Heron’s formula has
no sense in that case. One must then resort to Eq. A.5 in order to compute the
precise triangular area in metric space.

C Approximate Formulae for the Tetrahedron

As for the triangle, the knowledge of the edge lengths of a tetrahedron is suf-
ficient to uniquely define a tetrahedron in Euclidean or constant metric space.
Significant formulae for the tetrahedron can thus be expressed in terms of its
edge lengths, which will be valid, again, if sharp deformations in space are not
encompassed in single mesh elements.

Let K stands for a non degenerate tetrahedron with vertices Py, P,
P; and Py; Ly = ||Pj — B|l,1 < i < j < 4, denotes the length of the six
edges P P; of K; S1 denotes the area of the triangular face AP, P3Py, S> the area
of face APy P3Py, S3 the area of face APy P, P, and S, the area of face AP, P, Ps;
Vi denotes the volume of tetrahedron K.

The inradius px and the circumradius rx are given by

_ 3Vk
__.S1‘+A92‘+A93‘+'52’

PK

Vie+b+c)a+tb—c)a+c—b)(b+c—a)
24V ’

where @« = LyoL34, b = Li3L24 and ¢ = Ly4L23 are the products of opposite
edge lengths of K. In a tetrahedron, two edges are opposed if they share no
vertices.

The minimum and maximum edge lengths hy,;, and h,q, are trivially
given by

(C.2)

Tk =

Pomin = min(Li2, L13, L14, L2g, Loy, L3s), hinaz = max(Liz, L13, L14, La3, Loy, L3s)-
(C.3)
The solid angle 6; at the vertex P; of the tetrahedron is defined to be
the surface area formed by projecting each point of the face not containing P;
to the unit sphere centered at P;. Liu and Joe [24] give a formula to compute
solid angles of a tetrahedron in terms of edge lengths

~1/2
0; = Qarcsin<12VK< H ((Lij + Lik)z - L?k)) ) (C.4)

J,k#i
1<j<k<4



Finally, the volume Vi of a tetrahedron can also be expressed as a func-
tion of its edge lengths. Let a, b, ¢, ¢, f and g, the length of the six edges of the
tetrahedron. Edges a, b and ¢ connect to the same vertex of the tetrahedron, e
is the edge opposite of a, f to b and g to ¢. The edges ¢, f and g are the three
sides of a face of the tetrahedron, opposite to the vertex to which a, b and ¢
connect. For example, a, b, ¢, e, f and g can be Lyo, L3, L14, L3y, Loy and Log
respectively. Then, the volume of the tetrahedron is given by [31]

144VE = 4a®b*c® + (b2 +c? - 62) (02 +a%— f2) (a2 + b2 — 92)
— (VP +F =€) = (P +a’— ) = (a® + 0P —g?). (C.5)

Contrary to Heron’s formula (B.4) in two dimensions, this three-dimensional
version of Heron’s formula is not symmetric. The three edges a, b and ¢ which
start from the same vertex do not play the same role as the three edges e, f
and g which share a face. Eq. (C.5) can be rewritten in a formula that exhibits
more symmetry [31]. However, it is costlier to compute and more subject to
roundoff error.

Note that if the six lengths do not form a tetrahedron, as can happen
in a non-Euclidean metric, then the square of the volume has a negative value.
Heron’s three-dimensional formula has no sense in that case. One must then
resort to Eq. A.5 in order to compute the precise tetrahedral volume in metric
space.



